Deactivation pathways of ethylene polymerization catalysts derived from titanium and zirconium 1,3-bis(furyl)-1,1,3,3-tetramethyldisilazide complexes.

نویسندگان

  • Lloyd T J Evans
  • Martyn P Coles
  • F Geoffrey
  • N Cloke
  • Peter B Hitchcock
چکیده

The stoichiometric reaction between the previously described lithium amide salts, LiN(SiMe2R)2 [Li{i}, R = furyl, Li{ii}, R = 2-methylfuryl] and titanium(iv)chloride at low temperature afforded the mono-amide compounds Ti{i}Cl3 (1a) and Ti{ii}Cl3 (1b). The analogous zirconium derivatives Zr{i}Cl3 (3a) and Zr{ii}Cl3 (3b) were accessed via the reaction of excess trimethylsilylchloride with the mixed tetra-amide species, Zr{i}(NMe2)3 (2a) and Zr{ii}(NMe2)3 (2b). The bis-amide complexes Ti{ii}2Cl2 (4b), Zr{i}2Cl2 (5a) and Zr{ii}2Cl2 (5b) were synthesized in a straightforward salt metathesis reaction employing two equivalents of Li{i} or Li{ii} with the metal salts, MCl4(THF)2. The reactivity of the halide compounds 1 and 3-5 with a variety of alkylating agents was studied, with ligand transfer from the transition-element to the main group metal-alkyl reagent being the predominant reaction pathway. The reaction of 4b with MeLi was, however, partially successful affording the titanium(III) complex, Ti{ii}2X (X = Cl/Me, 6b'); this compound was subsequently made as the pure chloride from the reaction of two equivalents of Li{iii} with TiCl3(THF)3. The targeted dialkyl species, Ti{ii}Me2 (7b), was successfully isolated from the reaction between the dichloride 4b and dimethylmagnesium. The molecular structures of 1a, 1b, [3a]2 [3b]2, 4b, 5b and 6b have been solved using single-crystal X-ray diffraction techniques, indicating varying nuclearity of the complexes and hapticities for the amide ligands in the solid-state. The catalytic activity of selected complexes in the polymerization of ethylene is reported.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The effect of iodo substituents in bis(phenoxyimine) zirconium complexes on the catalytic performance of homogeneous ethylene polymerization reactions

Eight different zirconium phenoxyimine complexes were synthesized, characterized and tested as catalysts for ethylene polymerization. The phenoxyimine compounds were prepared by condensation of substituted salicylaldehydes with aliphatic and aromatic amines, the substituted salicylaldehydes from ortho substituted phenols and paraformaldehyde. The introduction of iodo substituents was achieved e...

متن کامل

Dissymmetric dinuclear transition metal complexes as dual site catalysts for the polymerization of ethylene

A series of dissymmetric dinuclear complexes were synthesized, as dual site catalysts in ethylene polymerization, by coupling the allylated a-diimine complexes of the metals Ti, Zr, V, Ni and Pd with the ansa-zirconocene complex [C5H4-SiH(Me)-C5H4]ZrCl2 possessing a hydride silane moiety. The different stages of syntheses included the formation of bis(cyclopentadienide)methyl silane which was u...

متن کامل

Diamido Complexes of Titanium and Zirconium as Catalyst Precursors for Ethylene Polymerization

A series of 8 new complexes of titanium and zirconium with diamido ligands bearing an ethylene and propylene bridge between the two amido groups were synthesized and tested for ethylene polymerization. Titanium complexes bearing an ethylene bridge between the two amido groups showed higher activities than the derivatives with a propylene bridge. In the case of the zirconium complexes, the p...

متن کامل

Group (IV) Metallocene Complexes with Bulky ω-aryloxyalkyl-Substituted Indenyl Ligands as Catalyst Precursors for Homogeneous Ethylene Polymerization

 A series of seven new complexes of zirconium and hafnium with bulky ω-aryloxyalkyl substituted indenyl ligands were synthesized and characterized by NMR spectroscopy and elemental analysis. These complexes were activated with methylaluminoxane and tested for homogeneous ethylene polymerization. The zirconium catalysts showed higher activities than their hafnium an...

متن کامل

High-temperature single-site ethylene polymerization behavior of titanate complexes supported by 1,3-bis(3,5-dialkylpyrazol-1-yl)propan-2-olate ligation.

Titanate(1-) complexes Na[(THF)(kappa1-O-bdbpzp)TiCl4] (1) and Na[(THF)(kappa1-O-bdmpzp)TiCl4] (2) and titanate(2-) complexes [Na(THF)]2[(kappa1-O-bdbpzp)2TiCl4] (4) and [Na(THF)]2[(kappa1-O-bdmpzp)2TiCl4] (5) were obtained in good yield from reaction of Na[bdbpzp] or Na[bdmpzp] (sodium salt of 1,3-bis(3,5-di-tert-butylpyrazol-1yl)propan-2-ol or 1,3-bis(3,5-dimethylpyrazol-1yl)propan-2-ol) with...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Dalton transactions

دوره 25  شماره 

صفحات  -

تاریخ انتشار 2007